22.06.2023.                                                Группа: 510.

                                    Предмет: Устройство и эксплуатация автомобилей.

                Особенности устройства подвески, амортизаторов,
          шин и колес, управляемых мостов.                                                        

    Грузовые автомобили работают на дорогах разных категорий: от магистральных автострад до грунтовых дорог в строительных карьерах, в условиях бездорожья. При создании грузового автомобиля подвеске уделяется все большее внимание. Ведь от ее совершенства зависят не только плавность хода, но и проходимость машины, безопасность движения, устойчивость, надежность, долговечность грузовика и даже расход топлива.  В зависимости от конкретных условий выбирается величина дорожного просвета машины между поверхностью дороги и нижними точками ходовой части и ее органов. Чем хуже условия, в которых предстоит работать машине, тем просвет должен быть больше, несмотря на некоторые негативные последствия, а именно: повышение центра тяжести, снижение устойчивости и т.д.
    На современных грузовых автомобилях можно встретить как зависимые, так и независимые подвески колес. При этом в силу экономической целесообразности наибольшее распространение получили рессорные подвески жестких балок мостов и только на магистральных тягачах в качестве упругих элементов прижились пневмобаллоны. Большее разнообразие конструктивных схем наблюдается на специальных военных машинах, к стоимости которых не предъявляются столь жесткие требования, как у обычных коммерческих грузовиков. На военных машинах можно встретить пружины и торсионы, гидропневматические элементы и стеклопластиковые рессоры.
     На автомобилях подвеска состоит из трех основных элементов:
   - упругий элемент – связывает раму с передним и задним мостами или с колесами и поглощает удары, возникающие при движении автомобиля, обеспечивая необходимую плавность хода. В качестве упругого элемента применяются листовые рессоры, пружины, пневмобаллоны и скручивающиеся упругие стержни (торсионы);
   - гасящий элемент – амортизатор служит для быстрого гашения вертикально-угловых колебаний рамы или кузова автомобиля. Наибольшее распространение получили телескопические амортизаторы двустороннего действия, которые гасят колебания как при сжатии, так и при растяжении упругого элемента;
   - направляющее устройство – обеспечивает вертикальные перемещения колес, а также передачу толкающих и тормозных усилий от колес к раме или несущему кузову. По типу направляющего устройства подвески делятся на зависимые (рессорные и балансирные) и независимые (пружинные).
    При зависимой подвеске оба колеса жестко связаны между собой мостом, подвешенным к раме. При этом перемещение одного из колес в поперечной плоскости вызывает перемещение другого колеса.
    При независимой подвеске колес каждое колесо непосредственно подвешено к раме или несущему кузову и перемещение одного колеса практически не зависит от перемещения другого.
    Тип направляющего устройства подвески определяют конструкцию переднего управляемого моста, базовой деталью которого является балка. Если она связана с колесами жестко, то мост называется неразрезным, а если через упругие элементы, то разрезным. На легковых автомобилях применяют разрезные передние мосты с независимой подвеской колес. Все грузовые автомобили имеют обычно неразрезные передние мосты и зависимую подвеску.
    Рессора в подвеске играет сразу едва ли не все роли. Она и упругий элемент, и направляющий элемент. Ее использование облегчает сборку и ремонт машины. Рессора проста по конструкции и в ремонте, но не лишена и целого ряда серьезных недостатков. К главным из них относятся: высокое межлистовое трение, способное сильно ухудшить плавность хода на хорошей дороге, а также большая материалоемкость в сочетании с технологической сложностью при производстве листов.
    Рессоры стремятся делать возможно более длинными, поскольку возникающие в них напряжения обратно пропорциональны квадрату длины. При недостаточной длине в коренном листе могут возникнуть большие напряжения, для уменьшения которых кривизну остальных листов делают такой, чтобы они воспринимали часть нагрузки коренного и нескольких следующих за ним листов, разгружая их. Самым напряженным является коренной лист, поэтому его делают или толще остальных, или для усиления ставят два-три коренных листа.
    Долговечность рессор, обусловленная начальными напряжениями, сложным напряженным состоянием, динамическим и повторяющимся воздействием разнообразных сил, остается невысокой. По сравнению с торсионами и пружинами рессора работает в менее благоприятных условиях; ее усталостная прочность в 4 раза меньше, чем у торсиона. В настоящее время при эксплуатации в хороших дорожных условиях (асфальтовое покрытие) долговечность рессор магистральных грузовиков составляет 100 – 150 тыс. км пробега, но в плохих условиях (грунтовые дороги, работа на стройках) она падает вдвое и доходит до 10 – 15 тыс. км в случае применения рессор, изготовленных ремонтными предприятиями.
    Для увеличения долговечности рессор применяют некоторые приемы, к которым относятся:
   а) разгрузка рессоры от некоторых действующих сил. Для уменьшения скручивания рессоры концы ее заделывают в резиновые опорные подушки, а введением дополнительного упора ограничивают изгибающий момент, действующий на рессору при торможении. Дополнительные тяги (соединяющие мост и раму) в настоящее время устанавливаются на большинстве рессорных передних подвесок, концы рессор при этом крепят к кузову двумя стремянками;
   б) уменьшение напряжений в рессоре. Это достигается ограничением средних амплитуд колебаний колеса относительно кузова введением дополнительно упругих элементов (например, резиновых, работающих на старте) и достаточного увеличения сопротивления амортизаторов. Напряжения могут быть уменьшены изменением формы поперечного сечения листов, что вызывает перераспределение нормальных напряжений.
   в) упрочнение рессоры. Усталостные разрушения рессорного листа начинаются с очагов, возникающих на поверхности, испытывающей растягивающие напряжения, или в углах сечения. В связи с этим широкое применение получило поверхностное упрочнение дробеструйной обработкой часто одного коренного листа со стороны, испытывающей растяжение. Эффект от обдувки значительно повышается при использовании межлистовых прокладок. Межлистовое трение приводит к появлению зон с высокими контактными напряжениями, что в условиях колебаний вызывает задиры на поверхности листов и в конечном счете появление очагов общего разрушения. Это явление ослабляется при введении межлистовых прокладок.
    Недостатком рессор является их линейная характеристика жесткости (т.е. прогиб пропорционален прикладываемому усилию), в то время как желательно иметь прогрессивное увеличение жесткости по мере прогиба. Некоторого изменения жесткости рессоры можно достичь установкой серьги с наклоном (на легких и средних грузовиках) или за счет цилиндрической задней опоры (на тяжелых грузовиках). Но оба способа позволяют реализовать нелинейность лишь в очень малых пределах.
    В большинстве случаев вопрос выбора типа системы ориентирован на требования к клиренсу. Так, в грузовых автомобилях часто используется зависимая подвеска, при которой дорожный просвет постоянный и не меняется при движении колеса. В независимом виде системы клиренс меняется с учетом движения пружин, что может быть актуальным при движении по бездорожью.
    Задние и передние мосты грузовых автомобилей и автобусов, а также задние мосты многих легковых автомобилей имеют зависимую подвеску. Ее широкое применение объясняется тем, что она не только смягчает толчки, воспринимаемые колесами от неровностей дороги, но и передает тяговые и тормозные силы от колес к раме автомобиля. Наиболее распространенным упругим элементом такой подвески является рессора, которая одновременно является и ее направляющим устройством.
    Полуприцеп – это незаменимая техника, которая используется для перевозки тяжеловесных грузов. Важными являются все характеристики, влияющие на его надежность, грузоподъемность. На полуприцепах, работающих в составе автопоездов применяются пневматические подвески. Пневматические подвески предпочтительно используются для дальних рейсов на магистралях. Такой вид подвески характерен для полурессор и интегрированных рычагов.
    При таком типе подвески рама авто соединяется с мостом посредством пневмоподушки – резинового упругого компонента, обеспечивающего подавление колебаний. Расходниками в таком случае становятся пневмобалон и амортизаторы. На случай разрыва пневмоподушки есть страховочный трос, который нельзя снимать.
    В процессе эксплуатации транспортного средства необходимо внимательно следить за состоянием этой части, особенно грузовых машин. При передвижении она испытывает большие воздействия со стороны дороги. Из-за этого некоторые детали могут терять свою работоспособность. Тогда их нужно ремонтировать или заменять.
    Следует осматривать весь механизм перед каждым рейсом, чтобы иметь представление о его исправности. Необходимо также проходить профилактическую диагностику, которая может показать неполадки, пока несущественные, но чреватые более серьезными последствиями. Устранить их на начальном этапе всегда проще и менее затратно.

             Амортизаторы для грузовых автомобилей.

    Грузовой автомобиль независимо от его размеров и грузоподъемности, это в первую очередь надежное техническое транспортное средство, обеспечивающее своевременную доставку грузов. Поэтому, грузовики проектируются с учетом высоких нагрузок на корпус автомобиля и его ходовую часть. От надежности и безотказности работы подвески зависит не только своевременное выполнение работы, но и безопасность груза, водителя и окружающих. Перечислять все узлы и агрегаты машины, которые являются наиболее ответственными деталями можно долго, но хочется уделить особое внимание амортизаторам. От этого агрегата зависит плавность хода, проходимость и маневренность автомобиля.
    Амортизатор для грузовика обеспечивает нивелирование восприятия колеса грузового автомобиля ухабов и неровностей дорожного покрытия, чем придает машине курсовую устойчивость и способствует существенному уменьшению внутренних вибраций кузова и повышает ресурс рабочих элементов корпуса. Широкое распространение для транспортных средств получили амортизаторы с двухтрубной телескопической конструкцией. Применяемый тип амортизатора отлично соответствует жестким требованиям эксплуатации грузовиков, концепция обеспечивает эффективную работу при сжатии и отбое.
    Цикл работы амортизаторов базируется на двух физических свойствах гидравлической жидкости:

   несжимаемость гидравлической жидкости;
   вязкость гидравлической жидкости.
    Гидравлическая жидкость помещенная в ограниченный объем, благодаря своим физическим свойствам, выступает основным рабочим телом стойки амортизатора и обеспечивает заданные параметры работы последнего.
    Цилиндры двухтрубного амортизатора конструктивно расположены соосно. В цилиндре происходит возвратно-поступательное движение поршня, на котором смонтирован клапан обратного хода и предусмотрен перепускной клапан, обеспечивающий ход сжатия.
    Донная часть цилиндра, также оборудована клапаном сжатия и перепускной клапан, работающий на отбое. Применяемая конструкция обеспечивает надежную и долговечную службу амортизатора независимо от условий эксплуатации автомобиля и воздействий окружающей среды.
    Амортизаторы для грузовых автомобилей на протяжении всего срока эксплуатации подвергаются высоким переменным нагрузкам, что негативно сказывается на основные рабочие части агрегата. Поэтому, при конструировании и изготовлении, конструктора и инженеры применяют наиболее оптимальные принципы устройства амортизатора, а также используют высококачественные материалы.
    В производстве внедряются процессы повышения прочности ответственных рабочих деталей амортизатора с целью обеспечения безотказности и надежности этой детали автомобиля. Хромирование и полирование поршневого штока обеспечивает надежную защиту от коррозии, уменьшает износ уплотнений и сальников. Направляющая втулка штока изготавливается из армированного серого чугуна или железо керамики, с низким коэффициентом сопротивления скольжению.
    Направляющая имеет стопор ограничения хода штока, что способствует уменьшению вероятности ударов, и как следствие — увеличивается ресурс работы амортизатора в целом.
    Уплотнение амортизаторов имеют сложную высокотехнологичную структуру, для их производства используются смеси пербунана или витоновых материалов. Характеристики этих материалов позволяют применять амортизаторы в широком температурном диапазоне, без потери рабочих свойств и качеств. Применяемые в уплотнениях материалы имеют высокий уровень инертности, что обеспечивает стойкость к агрессивным средам и, следовательно — надежность работы амортизатора.
    Гашение колебаний в амортизаторе, обеспечивается за счет сопротивления жидкости, во время диффузорного прохождения системы клапанов. Во время сжатия амортизатора жидкость поступает из подпоршневой в надпоршневую полость, а количество жидкости, выдавленное штоком, проступает во внешний цилиндр. При возвратном движении все происходит в обратном порядке. В современных амортизаторах используют полусинтетическую гидравлическую жидкость, устойчивую к влиянию высокой температуры и не теряющую свои характеристики при критически низких температурных показателях.
    Качественная работа амортизатора грузового автомобиля, обеспечивает безопасную эксплуатацию транспортного средства на любом покрытии и в различных дорожных ситуациях. При выходе из стоя амортизаторов или же при их неправильной работе, поведение автомобиля становится непредсказуемым и опасным.
    Транспортное средство с неисправными амортизаторами теряет управляемость, снижается комфорт и безопасность движения, возникают следующие проблемы:

   Заносы при движении в поворотах;
   Повышенный шум и вибрация;
   Сильные удары корпуса во время движения;
   Сильное раскачивание автомобиля;
   Потеря контроля над автомобилем.
    Рабочие элементы клапанов с уменьшенной усадочной потерей распределяют нагрузочное воздействие на всю рабочую область, исключая необходимость дополнительных регулировок. Износостойкие уплотнения креплений амортизаторов снижают шум и вибрацию кузова автомобиля, повышают долговечность корпусных деталей крепления. Правильная работа амортизаторов позволяет уверенно держать автомобиль в поворотах с критическими значениями радиуса, исключает возможность как продольного так и поперечного раскачивания машины.
                             Колеса и шины.

    Назначение колес – осуществление связи автомобиля с дорогой, обеспечение движения автомобиля, изменения направления движения и передачи вертикальных нагрузок от автомобиля к дороге. Проще говоря, именно благодаря колесам мы можем двигаться и управлять автомобилем, поэтому от правильного выбора колес напрямую зависит поведение автомобиля на дороге.
    Выделяют следующие виды колес:
   - ведущие;
   - управляемые;
   - комбинированные (ведущие и управляемые);

    Ведущие колеса имеют такое название как раз потому, что они преобразуют тягу двигателя в поступательное движение автомобиля, передавая все моменты и силы на дорогу. Управляемые колеса отвечают исключительно за контроль над направлением движения автомобиля. А если колесо получает тягу от двигателя, да еще и отвечает за направление движения, то оно является комбинированным.
    Автомобильное колесо в сборе состоит из пневматической шины, обода, ступицы и соединительного элемента — диска.
    Пневматическая шина является самым важным элементом в конструкции колеса. Если представить себе колесо без пневматической шины – жестким, например деревянным, то нетрудно предположить, что при качении такого колеса по твердой дороге траектория перемещения оси будет копировать профиль дороги. Удары колеса о неровности дороги в этом случае будут полностью передаваться на подвеску. И все выглядит совсем иначе, когда на колесо смонтирована пневматическая шина. В месте контакта эластичная шина (обычно выполненная на основе каучука и различных добавок – от сажи до оксида кремния) деформируется. При этом небольшие неровности, деформируя шину, не влияют на положение оси колеса.
    Если же колесо наезжает на более значительные препятствия, то сильные толчки вызывают увеличенную деформацию шины и плавное перемещение оси колеса. Способность пневматической шины плавно изменять отрицательное влияние дефектов дорожного покрытия на ось колеса называется сглаживающей.
    Эффект сглаживания обеспечивается упругими свойствами сжатого воздуха, находящегося в шине. Когда часть шины при качении выходит из контакта с дорожной поверхностью, доля энергии, затраченная на деформацию шины, тратится на внутреннее трение в резине, превращаясь в теплоту. Нагрев отрицательно влияет на свойства шин, как результат — ускорение износа.
    Потери энергии зависят от конструкции шины, внутреннего давления воздуха в ней, нагрузки, скорости движения и передаваемого крутящего момента. С увеличением деформации шины растут и потери на внутреннее трение, следствием этого является увеличение затрачиваемой мощности на движение автомобиля.
    Для уменьшения деформации и необратимых потерь давление воздуха в шине надо увеличивать. Однако для удовлетворения требований по обеспечению высокой сглаживающей способности шины, с одной стороны, и по уменьшению необратимых потерь на внутреннее трение, с другой стороны, давление воздуха в шинах каждого типа устанавливают с учетом их конструктивных особенностей и условий эксплуатации.

    Давление воздуха в шине колеса является важнейшим эксплуатационным показателем и каждым производителем устанавливается в соответствии с конструкцией и прямым назначением шины.
    Колесный диск обычно устанавливают на ступицу колеса, которая, в свою очередь, установлена в поворотный кулак и свободно вращается на роликовых подшипниках. Изготавливают диск из листового металла путем штамповки и последующей сварки элементов. Диски могут быть отлиты из легкосплавных материалов (например, алюминиевого и магниевого сплава), а могут быть и кованными, которые совмещают в себе легкосплавный материал и штамповку.
    Шины делятся на два типа: камерные и бескамерные. В шинах первого типа есть специальная камера, в которую закачивается воздух. В бескамерных шинах покрышка устанавливается на обод, уплотняется и накачивается воздухом.
    Резина, использующаяся для производства покрышек, состоит из каучука (натурального или синтетического), к которому добавляются сера, сажа, смола, мел, переработанная старая резина и другие примеси и наполнители. Покрышка состоит из протектора, подушечного слоя (с брекером), каркаса, боковин и посадочных бортов с сердечниками (силовое кольцо), как показано на соответствующем рисунке. Каркас служит основой покрышки: он соединяет все ее части в одно целое и придает покрышке необходимую жесткость, при этом обладает высокой эластичностью и прочностью. Каркас покрышки выполнен из нескольких слоев корда толщиной 1—1,5 мм. Число слоев корда является четным для равномерного распределения прочности конструкции и составляет обычно 4 или 6 для шин легковых автомобилей и 6—14 для шин грузовых автомобилей и автобусов.
    С увеличением числа слоев корда повышается прочность шины, но одновременно увеличивается ее масса и возрастает сопротивление качению, что неприемлемо.
    Корд представляет собой специальную ткань, состоящую, в основном, из продольных нитей диаметром 0,6 — 0,8 мм с очень редкими поперечными нитями. В зависимости от типа и назначения шины корд может быть хлопчатобумажным, вискозным, капроновым, перлоновым, нейлоновым и металлическим. Самым дешевым из всех является хлопчатобумажный корд, но он имеет наименьшую прочность, которая, к тому же, существенно уменьшается при нагреве шины. Прочность капронового корда приблизительно в 2 раза выше, чем хлопчатобумажного, а перлонового и нейлонового кордов — еще выше. Наиболее прочным является металлический корд, нити которого скручены из высококачественной стальной проволоки диаметром 0,15 мм. Прочность металлического корда выше хлопчатобумажного более чем в 10 раз, и она не снижается при нагреве шины. Шины из такого корда имеют небольшое число слоев (1—4), меньшие массу и потери на качение*, они более долговечны. Нити корда располагают под некоторым углом к плоскости, проведенной через ось колеса. Угол наклона нитей зависит от типа и назначения шин. Он составляет 50—52° для обычных шин.
    Подушечный слой (и брекер) связывает протектор с каркасом и предохраняет каркас от толчков и ударов, воспринимаемых протектором от неровностей дороги. Он обычно состоит из нескольких слоев разреженного обрезиненного корда, толщина резинового слоя в котором значительно больше, чем у каркасного корда. Толщина подушечного слоя равна 3—7 мм, а число слоев корда зависит от типа и назначения шины.
    Боковины предохраняют каркас от повреждения и действия влаги. Их обычно изготовляют из протекторной резины толщиной 1,5—3,5 мм.
    Борта надежно удерживают покрышку на ободе. Снаружи борта имеются один-два слоя прорезиненной ленты, предохраняющей их от истирания об обод и от повреждений при монтаже и демонтаже шины. Внутри бортов имеются стальные проволочные сердечники. Они увеличивают прочность бортов, предохраняют их от растягивания и предотвращают соскакивание шины с обода колеса.
    Камера удерживает сжатый воздух внутри шины. Она представляет собой эластичную резиновую оболочку в виде замкнутой трубы. Для плотной посадки (без складок) внутри шины размеры камеры несколько меньше, чем внутренняя полость покрышки. Поэтому заполненная воздухом камера находится в покрышке в растянутом состоянии. Толщина стенки камеры обычно составляет 1,5—2,5 мм для шин легковых и 2,5—5 мм для шин грузовых автомобилей и автобусов. На наружной поверхности камеры делаются радиальные риски, которые способствуют отводу наружу воздуха, остающегося между камерой и покрышкой после монтажа шины. Камеры изготовляют из высокопрочной резины.
    Бескамерная шина не имеет камеры и ободной ленты и выполняет одновременно функции покрышки и камеры. По устройству она очень близка к покрышке камерной шины и по внешнему виду почти не отличается от нее. Особенностью бескамерной шины является наличие на ее внутренней поверхности герметизирующего воздухонепроницаемого резинового слоя толщиной 1,5—3,5 мм.
    Материал каркаса бескамерной шины также характеризуется высокой воздухонепроницаемостью, так как для него используют вискозный, капроновый или нейлоновый корд, воздухонепроницаемость которого в 5—6 раз выше, чем у хлопчатобумажного корда.
    Посадочный диаметр бескамерной шины уменьшен, она монтируется на герметичный обод.
    Согласно правилам дорожного движения, запрещается устанавливать на одной оси шины различных размеров и с разным рисунком протектора.
    В идеальных условиях протектор должен отсутствовать в принципе, чтобы площадь контакта шины с поверхностью дороги была максимальной. Однако идеальные условия – это когда дорога покрыта асфальтобетоном, причем сухим. Как только на поверхности появится хотя бы небольшой слой воды или поверхность станет просто влажной, коэффициент сцепления шины с дорогой резко упадет, контакт потеряется и водитель утратит управление над автомобилем. Для того чтобы при наезде на поверхность со слоем воды эту самую воду было куда отводить, покрышка пестрит «ёлочкой» протектора. Если же шина предназначена для движения в зимний период, значит и форма протектора будет соответствующей — увеличенное количество ламелей и грязеотводов.
    Сила с которой колеса «цепляются» за дорогу характеризуется коэффициентом сцепления шин с дорогой. Коэффициент сцепления – это отношение силы сцепления колес с дорогой к весу, который приходится на данное колесо. Коэффициент сцепления с дорогой имеет решающее значение при торможении и разгоне автомобиля. Чем выше коэффициент сцепления колеса, тем более высокая будет интенсивность разгона и торможения автомобиля.
    
Ненаправленный рисунок — рисунок, симметричный относительно вертикальной оси колеса, проходящей через его ось вращения. Это самый универсальный рисунок, именно поэтому основная часть шин выпускается с таким рисунком.
    Направленный рисунок — рисунок, симметричный относительно вертикальной оси, проходящей через центральную часть протектора. Среди преимуществ такого рисунка — улучшенная способность отвода воды из пятна контакта с дорогой и пониженная шумность.
    Асимметричный рисунок — рисунок, не симметричный относительно вертикальной оси колеса. Такой рисунок используется для реализации различных свойств в одной шине. К примеру, наружная сторона шины лучше работает на сухой дороге, а внутренняя — на мокрой поверхности.
    Существует два понятия, относящиеся к каждой модели шины: типоразмер и индексы.
Например, указан типоразмер — 255/55 R16, где
255 – ширина профиля шины в мм;
55 – отношение высоты профиля шины (от посадочного обода до наружного края колеса) к ширине профиля в процентах. Чем меньше эта цифра, тем шире шина.
R — радиальная конструкция корда, составные нити корда в слоях каркаса имеют радиальное расположение (направлены от борта к борту);
16 — посадочный диаметр обода в дюймах (1 дюйм = 2,54 см).
    В индексах указываются параметры максимальной нагрузки на одну шину в килограммах и индекс скорости – максимальная допустимая скорость движения в км/ч, а также дополнительные индексы, характеризующие свойства конкретной шины.
     Существует два типа маркировки: для шин внутреннего рынка и для зарубежных шин. В соответствии с ГОСТом на покрышку наносятся следующие обязательные надписи:
   - товарный знак и (или) наименование изготовителя;
   - наименование страны-изготовителя на английском языке — «Made in…»;
   - обозначение шины;
   - торговая марка (модель шины);
   - индекс несущей способности (грузоподъемности);
   - индекс категории скорости;
   - «Tubeless» — для бескамерных шин;
   - «Reinforced» — для усиленных шин;
   - «M+S» или «M.S» — для зимних шин;
   - «All seasons» — для всесезонных шин;
   - дата изготовления, состоящая из трех цифр: первые две обозначают неделю изготовления, последняя — год;
   - «PSI» — индекс давления от 20 до 85 (только для шин с индексом «С»);
   - «Regroovable» — в случае возможности углубления рисунка протектора методом нарезки;
   - знак официального утверждения «E» с указанием номеров официального утверждения и страны, выдавшей сертификат;
   - номер ГОСТа;
   - национальный знак соответствия ГОСТу (допускается наносить только в сопроводительной документации);
   - порядковый номер шины;
   - знак направления вращения (в случае направленного рисунка протектора);
   - «TWI» — место расположения индикаторов износа;
   - балансировочная метка (кроме шин 6,50-16С и 215/90-15С, поставляемых в эксплуатацию);
   - штамп технического контроля.
    На покрышках зарубежных производителей могут присутствовать иные обозначение.
    Маркировку шин знать полезно, поскольку шина надевается на диск, который также имеет свою маркировку, и эта маркировка должна соответствовать подбираемой шине. Обозначение диска наносится на внутреннюю поверхность, должна дублироваться на упаковке и быть в сопроводительной документации или наклейках. Размер диска должен в обязательном порядке соотноситься с шириной шины.
    Шина, ширина которой не соответствует ширине диска, во время движения может соскочить.
             Передний управляемый мост и углы установки колес.

    Передний управляемый мост обеспечивает поворот автомобиля при помощи поворотных цапф, шарнирно соединенных с балкой моста. На управляемый мост, кроме вертикальной нагрузки от силы тяжести автомобиля, продольных и поперечных усилий от колес, действуют также силы и моменты, возникающие при повороте и торможении автомобиля. Устройство переднего управляемого моста во многом определяется конструкцией несущей системы и типом подвески.
    Передний мост автомобиля состоит из балки и поворотных цапф в сборе. Балка двутаврого сечения изготовляется из углеродистой стали. На ее концах в вертикальной плоскости сделаны отверстия для установки шкворней, обеспечивающих шарнирное соединение балки с поворотными цапфами. С одной стороны шкворни имеют лыску для удержания их от проворачивания в отверствиях балки, в которых они крепятся при помощи клиновидного штифта.
    
Поворотная цапфа стальная кованая. Она имеет фланец, на наружной стороне которого в вертикальной плоскости расположены два выступа с запрессованными в них втулками, в которые входят концы шкворня. Таким образом, правая и левая поворотные цапфы, вращаясь на шкворнях, могут поворачиваться в горизонтальной плоскости в обе стороны. Максимальный угол поворота цапф вправо составляет 34°, влево — 36°. Для облегчения поворота управляемых колес между балкой и нижним выступом фланца цапф установлены опорные шайбы. Для регулирования осевого зазора между поворотной цапфой и проушиной балки служат прокладки.
    
На поворотных цапфах установлены роликоподшипники, на которых вращается ступица с передним колесом. Внутренние кольца подшипников сидят на шейках цапфы, а наружные запрессованы в гнезда ступицы колеса. Подшипники регулируют гайкой, фиксируемой при помощи замочного кольца, замочной шайбы и контргайки.
    
С внутренней стороны ступицы к фланцу прикреплен болтами с гайками тормозной барабан. На наружных фланцах ступиц имеются отверстия для запрессовки в них шпилек, на которые устанавливаются диски направляющих колес автомобиля.
    
Автомобиль должен сохранять прямолинейное движение и возвращаться к нему после поворота. Нельзя допускать скольжение шин по дороге, так как это приводит к их быстрому изнашиванию. Для выполнения этих требований передние колеса и шкворни поворотных цапф управляемых мостов устанавливают под определенными углами. Конструкция переднего моста обеспечивает развал и схождение передних колес, а также поперечный (боковой) и продольный углы наклона шкворней.
    
Угол развала колес определяется углом, образуемым плоскостью вращения колеса с вертикальной плоскостью. Он обеспечивается углом наклона поворотных цапф вниз и считается положительным, если верхняя часть колеса отклонена наружу от вертикальной плоскости. Угол развала различен у разных моделей автомобилей и составляет 0—2°.
    
Угол развала необходим для обеспечения перпендикулярного расположения колес к поверхности дороги при движении автомобиля. Кроме того, при установке колес с углом развала сила реакции дороги в основном передается на внутренний подшипник ступицы колеса, выполняемый обычно большего размера, чем внутренний.
    
Схождение колес необходимо для того, чтобы обеспечить их параллельное качение. При движении автомобиля из-за установки колес с развалом возникает усилие, способствующее разворачиванию колес на угол 0,5—1° от вертикальной плоскости автомобиля. При этом колеса стремятся катиться по расходящимся дугам. Для устранения этого явления применяют схождение колес, при котором расстояние В между колесами впереди делают несколько меньше, чем расстояние Г между колесами сзади. В результате схождения колес они катятся параллельно и строго в продольной плоскости автомобиля, что устраняет боковое скольжение колес по дороге и уменьшает изнашивание шин. Так как угол схождения колес не превышает 1°, поэтому на практике схождение определяют как разность расстояний В и Г, которые измеряют между ободьями колес или боковинами шин на высоте их осей. Схождение колес зависит от угла развала и составляет 2—12 мм.
    
Поперечный наклон шкворня определяется углом , образуемым осью шкворня с вертикальной плоскостью, параллельной продольной плоскости автомобиля, иными словами, верхний конец шкворня наклонен внутрь к середине балки моста. Такой наклон шкворня совместно с углом развала колес уменьшает расстояние между точкой пересечения геометрической оси шкворня с дорогой и точкой центра контакта шины, т. е. уменьшается плечо момента, который необходимо приложить при повороте колес автомобиля, следовательно, облегчается управление автомобилем. Кроме того, при повороте колес вокруг шкворней с поперечным наклоном передняя часть автомобиля несколько приподнимается и при выходе его из поворота под действием силы тяжести стремится опуститься, обеспечивая возвращение колес в исходное положение, как только исчезнет сила, удерживающая колеса в положении поворота. Эти углы сравнительно велики и находятся в пределах б—10°.
    
Продольный наклон шкворня определяется углом, образуемым вертикальной плоскостью, перпендикулярной продольной оси автомобиля, и осью шкворня. При этом ось шкворня пересекается с дорогой на расстоянии от центра контакта шины. Это расстояние является плечом боковой силы, возникающей при повороте, в результате чего создается стабилизирующий момент, который стремится повернуть колесо вокруг шкворня и вернуть его в исходное положение. Этим обеспечивается лучшая устойчивость и стабилизация управляемых колес при прямолинейном движении автомобиля. Угол продольного наклона шкворня обычно находится в пределах 2,5—3,5°. Однако стабилизация управляемых колес зависит также от эластичности шин. Чем эластичнее шины, тем больше их деформация и момент, стремящийся повернуть колесо в нейтральное положение. Поэтому у автомобилей с шинами повышенной эластичности продольный наклон шкворня не превышает 1°.
    
С помощью переднего управляемого моста осуществляется поворот автомобиля. Передний мост может быть неразрезным или разрезным. При зависимой подвеске передних колес применяются неразрезные управляемые мосты.
    
Штампованная балка в средней части выгнута вниз для понижения центра тяжести автомобиля. Для большей прочности при малой массе балка имеет двутавровое сечение. Для крепления рессор на балке сделаны две площадки. Концы балки с помощью бобышек и шкворней соединяются шарнирно с поворотными цапфами. Шкворни крепятся в отверстиях бобышек клиновыми болтами, затянутыми гайками. На шкворни надеваются поворотные цапфы, к которым крепятся тормозные диски. Ступицы колес устанавливаются на цапфах на двух конических роликоподшипниках. Для крепления ступиц колес на поворотных цапфах служит гайка, которая шплинтуется и закрывается колпаком.
    
Для того чтобы цапфа могла легко поворачиваться в горизонтальной плоскости, в ее ушки, которыми она надевается на шкворень, ставятся бронзовые втулки, а между цапфой и балкой устанавливается подшипник, состоящий из двух стальных шайб и одной металлокерамической. Штампованный колпак защищает подшипник от попадания в него пыли и грязи. Сила тяжести автомобиля передается от бобышки передней оси к поворотной цапфе через опорный подшипник; шкворень в передаче этой нагрузки не участвует. Поэтому шкворни этого типа называются разгруженными. Шкворни других типов, которые участвуют в передаче силы тяжести и работают при этом на растяжение или сжатие, в настоящее время на автомобилях не применяются.
    
Между бобышкой передней оси и верхним ушком поворотной цапфы должен быть зазор не более 0,15 мм, для чего ставятся регулировочные прокладки.
    
В подшипники ступицы колеса закладывается консистентная смазка, вытеканию которой препятствует сальник.
    
При обслуживании автомобиля масло нагнетают через пресс-масленку в продольный канал шкворня для смазки опорного подшипника и бронзовых втулок шкворней; одновременно оно заполняет магазинную масленку, проходя через отверстие в опорной пластине, вследствие чего поднимается поршень и сжимается пружина. По мере расхода масла в процессе работы автомобиля оно подается из магазинной масленки под давлением пружины и поршня в продольный канал шкворня, а от него по радиальным отверстиям и кольцевым проточкам на наружной поверхности шкворня к бронзовым втулкам. На некоторых автомобилях такая масленка не ставится.
   
 Опорный подшипник поворотной цапфы представляет собой шайбы. Ступицы передних колес вращаются на поворотных цапфах на двух конических роликоподшипниках, регулируемых гайкой, которая стопорится замочным кольцом, контргайкой и замочной шайбой и закрывается колпаком. Подшипники шкворней смазываются через обычные масленки на ушках поворотных цапф.
    
При независимой подвеске передних колес автомобиль имеет разрезной передний мост. Мост такой конструкции применяется у легковых автомобилей.

             Тема: Особенности устройства подвески, амортизаторов, колес и шин,
                         управляемых мостов.
             Изучить: - назначение автомобильной подвески;
                             - виды автомобильной подвески;
                             - работа автомобильной подвески;
                             - назначение и виды амортизаторов;
                             - работа амортизаторов;
                             - назначение и устройство колес;
                             - диски и шины, размеры и маркировка;
                             - назначение и виды управляемых мостов;
                             - устройство и обслуживание управляемых мостов.

         Источник: Устройство и эксплуатация автотранспортных средств., Интернет издания.

 

Комментарии

Популярные сообщения из этого блога