30.03.2022.                                    Группа: 411.

                                 Предмет: Устройство и эксплуатация автомобилей. 

                 Устройство тормозных систем грузовых автомобилей.

     Тормозная система служит для снижения скорости движения и быстрой остановки автомобиля, а также для удержания его на месте при стоянке. Наличие надежных тормозов позволяет увеличить среднюю скорость движения, а следовательно, эффективность эксплуатации автомобиля. К тормозной системе автомобиля предъявляются высокие требования. Она должна обеспечивать возможность быстрого снижения скорости и полной остановки автомобиля в различных условиях движения.
    Современные автомобили оборудуют рабочей, запасной, стояночной и вспомогательной автономными тормозными системами.
    Рабочая тормозная система служит для снижения скорости движения автомобиля вплоть до полной его остановки вне зависимости от его скорости, нагрузки и уклонов дорог, для которых он предназначен.
    Запасная тормозная система предназначена для плавного снижения скорости движения или остановки автомобиля в случае полного или частичного отказа в работе рабочей тормозной системы.
    Стояночная тормозная система служит для удержания неподвижного автомобиля на горизонтальном участке или уклоне дороги.
    Вспомогательная тормозная система предназначена для поддержания постоянной скорости автомобиля при движении его на затяжных спусках горных дорог с целью снижения нагрузки на рабочую тормозную систему при длительном торможении.
    Тормозная система прицепа, работающего в составе автопоезда, служит как для снижения скорости движения прицепа, так и для автоматического торможения его при обрыве сцепки с тягачом.
    Каждая тормозная система состоит из тормозных механизмов, которые обеспечивают затормаживание колес или вала трансмиссии, и тормозного привода, приводящего в действие тормозной механизм. По расположению тормозные механизмы подразделяются на колесные и трансмиссионные, по форме вращающихся деталей – на барабанные и дисковые. Тормозной привод может быть гидравлическим, пневматическим и механическим. Для облегчения управления тормозами могут использоваться усилители, а также устанавливаться регуляторы тормозных сил и другие устройства, повышающие эффективность торможения автомобиля.
    На всех автомобилях применяют независимо действующие тормозные системы: одна управляется педалью (ножной тормоз), а другая – рычагом (стояночный тормоз). Ножная педаль автомобиля действует на тормозные механизмы, расположенные на всех колесах, а рычаг – дополнительно на тормоза задних колес или на центральный трансмиссионный тормоз. Ножной тормоз используется как основной для торможения при движении, а стояночный – для затормаживания на стоянке.
    Приводы от педали тормоза к тормозным механизмам бывают двух типов: гидравлический и пневматический. Механический привод применяют только для стояночных тормозов. Гидравлический привод отличается простотой конструкции и высокой надежностью. Однако для остановки автомобиля с гидравлическим приводом тормозов водитель должен приложить большое усилие. Поэтому гидравлический привод применяют на легковых автомобилях или на грузовых автомобилях и автобусах, полная масса которых не превышает 5 – 6 т. На грузовых автомобилях и автобусах с полной массой более 8 т. устанавливают пневматический привод тормозов, который сложнее и дороже гидравлического, но лишен указанного недостатка. На некоторых моделях автомобилей применяют разновидность пневматического привода – пневмогидравлический привод.
    Тормозные механизмы служат для создания искусственного сопротивления вращению колес автомобиля.
    Эффективность торможения зависит от конструкции тормозов. Наибольшее распространение на автомобилях получили барабанные тормозные механизмы с внутренним расположением колодок.
    Перспективным типом являются дисковые тормоза, которые имеют преимущество перед барабанными из-за быстрой отдачи тепла, работоспособности при больших скоростях и стабильности торможения. На передних колесах большинства легковых автомобилей устанавливают дисковые тормозные механизмы, обеспечивающие более эффективное торможение, чем колодочные, а на некоторых легковых автомобилях дисковыми тормозами оборудуются и задние колеса.   Гидравлические приводы тормозных механизмов в своей работе используют гидростатические законы, передавая энергию жидкости под давлением. Принцип действия гидростатического привода основан на свойстве жидкости сохранять свой объем при внешнем давлении (ничтожно малая сжимаемость), а также способности передавать создаваемое в любой точке давление одинаково всем точкам замкнутого объема жидкости.
    
Гидравлический привод тормозных механизмов имеет ряд существенных преимуществ перед другими типами привода:
   
одновременность торможения всех колес (в принципе) и требуемое распределение тормозных сил между отдельными колесами (дифференцирование тормозных усилий);
   
высокий КПД – 0,9 и выше при нормальной температуре охлаждающей жидкости (для сравнения – КПД механического привода редко превышает 0,6);
   
малое время срабатывания (0,05…0,2 сек). Благодаря этому свойству, обусловленному ничтожно малой сжимаемостью жидкости, гидравлический привод имеет неоспоримое преимущество перед пневматическим приводом, имеющим время срабатывания примерно в десять раз больше;
   
относительно малые габариты и масса применяемых в гидроприводе приборов и устройств;
   
простота конструкции и удобство компоновки (трубки гидропривода можно проложить как угодно и где угодно в кузове или других элементах конструкции автомобиля – на работоспособность привода это не повлияет).
    
Не лишены гидравлические приводы тормозов и некоторых существенных недостатков:
   
невозможность получения большого передаточного числа привода. Как известно, передаточное число гидростатических систем можно установить соотношением площадей поперечного сечения поршней передающего и принимающего усилие гидроцилиндров (или заменяющих их элементов). Очевидно, что существенное увеличение передаточного числа привода для повышения тормозного усилия приводит к значительному увеличению хода управляющего органа (тормозной педали или рычага);
   
выход из строя при местном повреждении какого-либо из элементов конструкции (трубки, штуцера и т. п.), т. е. относительно низкая надежность привода. Для устранения этого недостатка применяют многоконтурные приводы;
   
невозможность продолжительного и опасность чрезмерно интенсивного торможения. Продолжительное торможение может вызвать перегрев, и даже закипание тормозной жидкости из-за нагрева элементов конструкции тормозных механизмов (колодок, барабанов и т. п.). Интенсивное торможение с чрезмерным усилием может привести к повреждению уплотнительных элементов, что, в свою очередь, приведет к разгерметизации привода и потере его работоспособности;
   
высокая чувствительность к попаданию воздуха в привод, резко снижающая его работоспособность (и даже приводящая к полному отказу) при завоздушивании системы;
   
зависимость КПД привода от температуры тормозной жидкости (при низких температурах эффективность работы гидравлического привода резко снижается из-за повышения вязкости жидкости);
   
использование в качестве рабочего тела специальных жидкостей, способных нанести вред окружающей среде, животным и человеку при попадании на почву и во внешнюю среду.
    Одними из безусловных преимуществ пневматического привода являются контроль тормозов прицепа и точность слежения за процессом торможения. Если сравнивать пневматический привод с гидравлическим, то первый по своим конструктивным особенностям является более сложным и дорогостоящим. Кроме того, запчасти для грузовых автомобилей и грузовых иномарок больше весят, имеют внушительные габариты и стоят дороже.
    Принцип работы дискового тормоза знает любой водитель: фрикционные накладки расположены по обе стороны стального диска, который надет на ступицу колеса и вращается вместе с ней. Нажатие на педаль тормоза приводит в действие привод, накладки зажимают диск и останавливают его, а вместе с ним и автомобиль.
    В отличие от дискового тормоза, в барабанном фрикционные накладки располагаются внутри тормозного барабана. При нажатии педали привод раздвигает колодки, и они прижимаются к внутренним стенкам.
    По эффективности барабанные тормоза стоят далеко позади дисковых, и в прямом, и в переносном смысле. Поскольку для остановки автомобиля торможение передних колес важнее, чем задних, то барабанные тормоза иногда ставят на задние колеса в недорогих моделях автомобилей.
    Гидравлический привод тормозных механизмов может иметь разнообразные компоновочные схемы и включать различные приборы и устройства для обеспечения надежного и комфортного управлением процессами торможения автомобиля. Тем не менее, в любом гидравлическом приводе присутствуют обязательные элементы, различающиеся только конструктивно и имеющие одинаковое назначение. Рассмотрим устройство этих элементов и устройств на примере простейшего гидропривода тормозных механизмов.
    Простейший гидравлический привод состоит из органа управления (тормозной педали), главного тормозного цилиндра, трубопроводов и колесных рабочих цилиндров. В современных гидроприводах обязательным элементом является регулятор давления и гидровакуумный усилитель.
    Главный тормозной цилиндр воспринимает усилие, создаваемое ногой (или рукой) водителя посредством управляющего органа (педали или рычага) и передает его посредством подвижного поршня рабочей жидкости. Конструкции главных тормозных цилиндров могут быть различны, но принципы, положенные в основу их работы, одинаковые.
    Конструктивно простейший главный тормозной цилиндр состоит из корпуса-цилиндра с размещенным в нем подвижным поршнем, а также уплотнительных и соединительных элементов. Более сложные конструкции, применяемые в двухконтурных и многоконтурных приводах, включают два поршня, каждый из которых обеспечивает работоспособность отдельного контура. Цилиндр при этом конструктивно разделен на два полностью или частично изолированных объема. Иногда в многоконтурных гидроприводах тормозов для повышения надежности применяют сдвоенные главные цилиндры, в корпусе которых параллельно выполнены два цилиндра с установленными в них поршнями.
    Непосредственно на главном тормозном цилиндре или рядом с ним размещается резервуар с запасом тормозной жидкости – бачок, объем которого посредством специальных каналов сообщается с объемом гидроцилиндра. Если бачок устанавливается отдельно, его соединяют с главным тормозным цилиндром посредством резиновой трубки. Связь гидроцилиндра с резервуаром обеспечивает пополнение жидкостью при утечках, вытеснение излишков жидкости при ее тепловом расширении, компенсацию изменения объема жидкости после регулировок.В расторможенном состоянии полости цилиндров соединяются каналами с резервуаром для пополнения жидкостью при необходимости. При перемещении поршня после воздействия на него штока, связанного с тормозной педалью (рычагом) эти каналы перекрываются корпусом поршня, и жидкость может вытесняться из цилиндра только в трубопроводы контура гидропривода. В многоконтурных приводах применяются два резервуара (бачка) или один с раздельной перегородкой.
    Поршни имеют кольцевые уплотнительные манжеты, прижимаемые пружинами. Наружная поверхность поршней имеет проточку для размещения уплотнительных колец, длина которых меньше длины проточки. Помимо проточки поршни имеют кольцевые полости и плоские угловые пазы, которые соединяются с резервуаром (бачком) при любом положении поршней. Это препятствует попаданию воздуха в гидравлическую магистраль.
    Наиболее опасным, с точки зрения попадания воздуха в главный тормозной цилиндр, является режим растормаживания, который, как правило, производится быстро, броском педали. Жидкость, вследствие ее вязкости, возвращается в главный тормозной цилиндр относительно медленно, и поршни под действием пружин, стремятся оторваться от столба жидкости, создавая в магистрали разрежение. Предотвратить при этом попадание воздуха в магистраль одними резиновыми уплотнениями сложно, поэтому с тыльной стороны поршней или в них самих располагают полости, заполненные жидкостью, и при любом положении поршней сообщаются с резервуаром с помощью отверстий. Таким образом создается своеобразный гидравлический затвор, препятствующий проникновению воздуха в гидропривод.
    В корпусе гидроцилиндра ввернуты упорные болты, определяющие крайнее правое положение поршней и уплотнительных колец, соответствующее расторможенному состоянию тормозной системы. Конфигурация поршней такова, что в указанном крайнем положении кольца, упираясь в болты, отрывают манжеты от поршней, сообщая резервуары с магистралями. В начале торможения поршни, перемещаясь в цилиндре (один – под действием штока педали, другой – под действием давления жидкости) надвигаются на манжеты, после чего тормозная жидкость начинает вытесняться в магистрали контуров.
    В случае потери герметичности одного контура, питаемого, например, через левое отверстие, левый поршень, вытеснив жидкость через обрыв магистрали, упирается уплотнителем в дно цилиндра, образовав для правой рабочей полости фиктивное дно и обеспечивая герметичность второй рабочей полости. Если разгерметизация произойдет в контуре, подпитываемом из правой полости, то правый поршень, вытеснив жидкость через место утечки, упрется удлинителем в левый поршень, непосредственно передавая на него усилие со стороны штока.
    В современных конструкциях главных тормозных цилиндров устанавливают сигнализаторы уровня жидкости в резервуаре (бачке). Контрольная лампа сигнализатора (красного цвета с соответствующим изображением) устанавливается на щитке приборов. Датчики таких сигнализаторов имеют поплавковую конструкцию – плавающий в бачке с жидкостью поплавок при нормальном уровне жидкости размыкает контакты цепи питания лампы сигнализатора. При недопустимом понижении уровня жидкости поплавок опускается ниже, контакты цепи питания сигнальной лампы замыкаются, и она загорается, сигнализируя водителю о недостатке жидкости в резервуаре.
    При заправке гидравлического привода тормозной системы рабочей жидкостью, а иногда и при эксплуатации автомобиля, из тормозной системы необходимо удалить воздух. Для этого в самых высоких местах привода и местах вероятного завоздушивания устанавливают клапаны прокачки.
    Колесные рабочие цилиндры являются исполнительными элементами привода. Они принимают давление жидкости, создаваемое главным тормозным цилиндром, и приводят в действие тормозные механизмы колес.
    Рабочие цилиндры имеют чугунный или (реже) из легкого сплава корпус и поршни с уплотнительными манжетами. Регулировка зазоров производится между фрикционными накладками и барабаном автоматически. На поршень рабочего цилиндра надевается разрезное пружинное кольцо. Между кольцом и поршнем имеется радиальный и осевой зазоры. Величина осевого зазора нормируется и соответствует необходимой величине зазора между колодкой и барабаном. Радиальная упругость кольца также нормируется с целью получения определенной величины силы трения между кольцом и цилиндром. Указанная сила трения должна гарантированно превышать силу возвратных пружин, приведенную к поршню, но не быть чрезмерной, чтобы не слишком сильно снижать приводную силу поршня.
    Для регулировки механизма после сборки необходимо нажать на педаль тормозной системы. Поршни рабочих цилиндров, перемещаясь наружу под действием давления жидкости, выберут имеющийся зазор, после чего потянут кольца за собой. Движение поршней будет продолжаться до тех пор, пока колодки не упрутся в барабан. При отпускании педали возвратные пружины смогут переметить поршни назад только на величину, соответствующую осевому зазору между поршнем и кольцом, так как сдвинуть кольцо они не в состоянии. Величина же зазора между кольцом и поршнем, как было указано выше, соответствует необходимому зазору между колодками и барабаном. Таким образом, по мере изнашивания тормозных накладок кольцо будет перемещаться вдоль цилиндра, поддерживая постоянную величину зазора между накладками колодок и барабаном.
    Регулятор давления корректирует давление тормозной жидкости в системе задних тормозных механизмов в зависимости от изменения нагрузки на задние колеса.
    Регулятор состоит из корпуса, в котором установлена гильза поршня. В углубление на гильзе вставляется шарик, который удерживается пружиной. В гильзе перемещается поршень, на конце которого крепится управляющий конус. Возвратная пружина поршня удерживает его в исходном положении пир неработающем регуляторе. В корпус регулятора ввернута втулка, на конце которой установлен защитный резиновый чехол.
    В подпоршневую полость регулятора поступает жидкость от главного тормозного цилиндра, а из надпоршневой полости выходит жидкость для приведения в действие колесных рабочих цилиндров задних тормозных механизмов. Управление регулятором осуществляется посредством упругого элемента, который крепится к полу кузова и к нажимному рычагу поршня регулятора.
    До вступления в работу регулятора давление жидкости одинаково как в обеих полостях, так и в любой точке гидропривода, так как перепускной шарик поднят управляющим конусом, что обеспечивает свободное прохождение тормозной жидкости из подпоршневой полости в надпоршневую.
    При торможении увеличивается расстояние между кузовом и задним мостом (автомобиль «кивает»), при этом уменьшается нагрузка на задние колеса и соответственно уменьшается сила, действующая со стороны упругого элемента на поршень регулятора. Когда усилие со стороны жидкости на головку поршня превысит сумму усилий упругого элемента и жидкости на меньшую (подпоршневую) площадь поршня, последний переместится в сторону нажимного рычага, а управляющий конус освободит шарик, который под действием прижимной пружины перекроет доступ жидкости из подпоршневой полости в надпоршневую. С этого момента давление в подпоршневой полости будет выше давления в надпоршневой, обслуживающей задние тормозные механизмы.
    В результате тормозное усилие на колодки передних тормозных механизмов будет несколько выше, чем в задних тормозных механизмах, что обеспечит эффективное торможение. Если автомобиль полностью загружен, то при торможении его задняя часть менее поднимется над задним мостом, и разница в давлениях полостей над поршнем регулятора и под ним будет незначительной.
    После снятия усилия с педали тормозной системы поршень регулятора возвратится в исходное положение, а управляющий конус, приподняв шарик, откроет доступ жидкости из подпоршневой полости в надпоршневую. Давление жидкости по всему контуру тормозного привода выровняется.
    В настоящее время на некоторых автомобилях применяется гидравлический привод с принудительной подачей рабочей жидкости к тормозным механизмам, оборудованный специальным насосом. В этом случае для создания необходимых для эффективного торможения автомобиля тормозных моментов на колесах используется энергия двигателя, приводящего в действие гидравлический насос непосредственно, или через какой-либо агрегат силовой передачи автомобиля. Такая конструкция, несмотря на некоторую сложность, позволяет обойтись без усилителей гидропривода, существенно уменьшить усилие, прилагаемое водителем к управляющим органам тормозной системы и повысить комфорт управления автомобилем.
   В пневматической системе тормозов принцип использования мощной энергии пневматики – это применение пневматического привода в общей механике грузовых транспортных средств.
    Схемы пневматического тормозного привода различаются между собой по числу трубопроводов (одно или двухпроводные), связывающих автомобиль-тягач с прицепом. В остальном между ними много общего.
    В пневматический привод тормозов входят:
   - компрессор;
   - регулятор давления;
   - предохранительный клапан;
   - баллоны;
   - тормозной кран;
   - колесные тормозные камеры;
   - педаль тормозов;
   - соединительная головка и разобщительный кран;
   - кран отбора воздуха;
   - сливной кран;
   - манометр.
    Пневматический тормозной привод работает следующим образом:
    Компрессор нагнетает воздух в баллоны и обеспечивает систему сжатым воздухом. Давление воздуха в системе контролируется по манометру. 
    Компрессор, установленный на автомобилях - поршневого типа, двухцилиндровый одноступенчатого сжатия, приводится в действие клиновидным ремнем от шкива вентилятора двигателя и подсоединяется к системам смазки и охлаждения двигателя.
    Через впускной трубопровод и воздухоочиститель воздух поступает в цилиндры компрессора. Попадает он туда через впускные клапаны пластинчатого типа. В свою очередь, происходит вытеснение воздуха, который сжат поршнями, в воздушные баллоны через специальные клапаны, расположенные в головке цилиндров.
    Когда давление достигнет 700 кПа, регулятор прекращает подачу воздуха в пневмосистему посредством соединения атмосферы с нагнетательной магистралью. При снижении давления до 650 кПа в нагнетательной магистрали, тот же самый регулятор перекрывает поступление воздуха в атмосферу. Это действие запускает механизм нагнетания воздуха в пневмосистему.
    Тормозная камера нужна для того чтобы запустить тормозные механизмы, отвечающие за торможение передних колес грузового транспортного средства.
    Сжатый воздух при торможении проводится через штуцер в наддиафрагменную полость емкости. В свою очередь, диафрагма прогибается и осуществляет поворот регулировочного рычага тормоза, который осуществляет плотное примыкание к тормозному барабану колодок. Усилие, с которым производится это действие, прямо пропорционально давлению сжатого воздуха, который подведен в тормозную камеру.
    Когда осуществляется процесс оттормаживания, то есть в тормозной камере происходит сброс давления, шток возвращается в свое исходное положение под действием возвратной пружины. Регулировочный рычаг, в свою очередь, поворачивается, а тормозные колодки в этот момент освобождаются. Колодки отходят от тормозного барабана благодаря усилию стяжных пружин.
    В рабочей тормозной системе имеется контур привода тормозов колес задней тележки. Его главные приборы – это воздушный баллон, часть тройного защитного клапана, авторегулятор тормозных сил, верхняя секция тормозного крана, тормозные камеры в количестве четырех штук, трубопровод к верхней секции клапана.
    Автоматический регулятор тормозных сил предназначен для их автоматического регулирования на колесах задней тележки и работает в зависимости от изменения осевой нагрузки колес. Процесс регулировки тормозных сил осуществляется посредством повышения/снижения давления воздуха в тормозных камерах колес задней тележки. На данный процесс влияет осевая нагрузка во время торможения транспортного средства.
    Отказ тормозов всегда был самым большим кошмаром любого водителя. Поэтому инженеры давно придумали, как сделать, чтобы можно было остановить машину даже с поврежденной тормозной системой.
    Одним из вариантов страховки на случай отказа стало разнесение системы на два контура. Двухконтурные тормоза это не так сложно, как могло быть, зато надежно и безопасно. Даже если один из контуров откажет, система продолжит работать, позволив избежать аварии.
    Есть 5 вариантов компоновки контуров гидравлической системы. В большинстве случаев владелец автомобиля даже не задумывается, какая там у него схема разнесения контуров. Тормоза работают – и отлично.
    Гидравлическая тормозная система работает достаточно просто:
   - когда водитель нажимает на нее, давление передается на вакуумный усилитель тормозов;
   - вакуумный усилитель увеличивает давление и передает его на главный тормозной цилиндр, вдавливая поршень;
   - от главного тормозного цилиндра по трубопроводам гидравлическая жидкость поступает к цилиндрам суппортов. За счет несжимаемости жидкости, она почти мгновенно передает усилие от главного цилиндра на тормозные механизмы, и они приходят в действие;
   - рабочие цилиндры суппортов прижимают тормозные колодки к дискам или барабанам; Чем сильней водитель давит на педаль, тем больше и резче будет усилие на тормозах. Это дает возможность управлять автомобилем, чувствуя и рассчитывая силу торможения;
   - когда водитель отпускает педаль, система возвращается в нейтральное положение. Педаль становится на место благодаря возвратной пружине, давление в гидросистеме падает.
    Основные неисправности тормозной системы:
   - Износ тормозных колодок, дисков, их неисправность, деформация и т.д. Тормозные колодки и диски не вечные, но периодически они сами напоминают нам, когда начинают скрипеть, свистеть, скрежетать и издавать другие ненормальные звуки. Если диагностика показала, что колодки вышли из строя, нужно менять и их, и диски;
   - Утечка через поврежденные шланги, и воздушная пробка, и изношенные прокладки главного цилиндра. О таких неполадках говорит увеличенный ход педали тормоза. Ремонт заключается в поиске протечки, устранении неисправности, замене изношенных деталей, прокачке системы;
   - Вышел из строя вакуумный усилитель. В этом случае при нажатии на педаль будет чувствоваться большее сопротивление, чем обычно. При осмотре нужно обратить внимание на состояние усилителя;
   - Заклинил поршень главного тормозного цилиндра. Когда такое случается, в гидросистеме создается постоянное давление, которое действует, в том числе, и на тормозные суппорта. То есть колёса будут тяжелыми, замедленными. Нужен демонтаж, проверка и ремонт главного тормозного цилиндра, после чего можно ездить дальше.
    В пневматической системе тормозов возможные неисправности:
   - Компрессор не обеспечивает систему нужным объемом воздуха или не развивает нужное давление в баллонах и системе;
   - Имеется утечка воздуха в трубопроводах или в местах соединения;
   - Пробой или порыв диафрагмы в тормозных камерах.

             Тема: Устройство тормозных систем грузовых автомобилей.
             Изучить: - назначение тормозной системы на автомобиле;
                             - виды тормозных систем грузовых автомобилей;
                             - типы тормозных систем грузовых автомобилей;
                             - устройство и работа тормозной системы с гидравлическим приводом;
                             - устройство и работа тормозной системы автомобиля с пневматическим
                                приводом;
                             - основные неисправности тормозных систем грузовых автомобилей.

       Источник: Устройство и эксплуатация автотранспортных средств., Интернет издания.  

Комментарии

Популярные сообщения из этого блога